showed no evidence of isomerization of 9 to ketene 10 after 10 days. Thus, we conclude that the actual dianion is dilithioynolate 8 and not dilithioketene (11) and that the ketene products arise from a salt-promoted isomerization rather than a purely thermal rearrangement.12,14

Since a mixture of silvlated ketene (and/or siloxyacetylene) and silvlated dihydrofuran (e.g., 3 and 4) is always obtained, we modified the starting material so as to make olefin extrusion more favorable. Use of 2-phenyl-2,3-dihydrofuran $(12)^{16}$ has the ad-

$$\begin{array}{c|cccc} & (1) & n - BuLi \\ \hline & (2) & n - BuLi \\ \hline & (3) & Me_3SiCI \\ \hline & 12 \\ \end{array} \begin{array}{c} (1) & n - BuLi \\ \hline & (3) & Me_3SiCI \\ \hline & & 6 & 65\% \end{array}$$

vantage of styrene extrusion rather than ethylene, and indeed sequential metalation of 12 with 2 equiv of n-BuLi followed by quenching with Me₃SiCl afforded ketene 6 in 65% yield uncontaminated by silylated dihydrofuran or styrene which is polymerized under these conditions.

Acknowledgment. The support of this work by the National Science Foundation is gratefully acknowledged. We thank Professor Richard C. Larock for supplying us with the procedure for the synthesis of 12 before publication.

- (12) These observations call into question the sole report¹³ of the generation of dilithioketene (12).
- (13) Hoppe, I.; Schöllkopf, U. Leibigs Ann. Chem. 1979, 219.
 (14) Theoretical calculations¹⁵ place alkynols significantly higher in energy than the corresponding ketenes.
- (15) Radom, L.; Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc. 1971, 93, 289
- (16) Although 12 is a known compound,¹⁷ we have used a convenient synthetic procedure involving the Pd(OAc)₂ initiated reaction of dihydrofuran and iodobenzene.
 - (17) Scribe, P.; Wiemann, J. Bull. Soc. Chim. Fr. 1971, 2268.

(18) Private communication from Professor Richard C. Larock, who will soon publish this procedure.

A Trans Effect on Methyl Migration from Iridium(III) to Carbon Monoxide. The Influence of π Acceptor Ligands on the Methyl Migration Reaction

Mitsuru Kubota,* T. Mark McClesky, Randy K. Hayashi, and Carl G. Webb

> Department of Chemistry, Harvey Mudd College Claremont, California 91711 Received June 29, 1987

The migratory insertion of carbon monoxide into a metalcarbon bond has been intensively studied because of its significance in metal-catalyzed processes for forming carbon-carbon bonds.¹ Many aspects of the migration reaction including stereochemistry at carbon and the metal,² the effects of solvents³ and incoming ligands, the migratory aptitudes of the migrating group, the acceleration of the migration reaction by Lewis acids⁴ and oxidation-reduction,⁵ and the characterization of unsaturated inter-

 aQ is PPh₃. L is H₂O for 2A. L is CO for 2B, 3B, 4B, and 5B. L is RNC for 2C, 3C, and 4C. X is NCO for 5B-1 and NCS for 5B-2. L is PhCN for 2D. L is Cl⁻ for 2E.

mediates formed upon migration have been previously examined in great detail, but experimental studies on the influence of ligands on the primary migration step have not been reported. Berke and Hoffmann on the basis of molecular orbital calculations predicted in 1978 that π acceptor ligands L in the migrating plane should lower the activation energy for the primary migration step in the Mn(CO)(CH₃)L system and that σ donor ligands should raise the activation energy,⁶ but these predictions have not been verified. We report experiments which indicate that π acceptor ligands CO and isonitriles which are trans to the migrating methyl ligand do indeed promote migratory insertion and that σ donor ligands trans to the migrating methyl ligand do not promote migration.

Addition of $(CH_3)_3OBF_4$ to trans- $[Ir(CO)Cl(PPh_3)_2]$ gave $[Ir(PPh_3)_2(CO)Cl(CH_3)BF_4]$, 1 [Anal. $(C_{38}H_{33}OP_2IrClBF_4)C$, H, Cl; IR (cm⁻¹, Nujol) 2067 (CO), 1060-1100 vs b (BF)]. Compound 1 in CDCl₃ rapidly reacts with water to give 2A (L = H_2O) [(¹H NMR δ 0.82 (t, J = 4.7 Hz, 3 H), 4.9 (s, 2 H, H_2O), 7.5-7.8 (m, 30H, 6 Ph); ${}^{31}P{}^{1}H{} NMR \delta 18.6 s; IR (cm^{-1}, CDCl_3)$ 2038 (CO), 1072-1110 vs b (BF), 3532, 1616 (OH)]. The triplet at 0.82 ppm is due to the coupling of the methyl hydrogen atoms with the two phosphorus atoms which as shown by the singlet ${}^{31}P$ NMR are trans to each other, and the assignment of the resonance at 4.9 ppm to water is verified by its immediate disappearance upon the addition of D_2O , CO, and isonitriles (see Scheme I). Addition of CO (30 psi) to 2A initially gives 2B characterized by ¹H NMR (CDCl₃) δ 1.08 (t, J = 6.8 Hz), IR (cm⁻¹, CDCl₃) 2097, 2071(CO), and gradual formation of singlet proton resonances at 1.21 and 1.25 ppm. These singlet proton resonances along with IR absorptions at 1732 and 1629 cm⁻¹ are assigned to the acetylated species 3B and 4B. The neutral five coordinate phenylacetyl complex [Ir(PPh₃)₂(PhCH₂CO)Cl₂], which is analogous to **3B** in which L is Cl, has been previously reported.⁷ The structure for 3 is likely to be square pyramidal with the acyl ligand in the apical position analogous to the structure of [Rh-(PPh₃)₂Cl₂(PhCH₂CH₂CO)].⁸ Reversible addition of CO to acylated 16-electron complexes analogous to 3 has been reported,7 and the addition of anions $X^- = NCO^-$ and NCS⁻ to 4B led to the isolation of crystalline **5B-1** and **5B-2** [Anal. $(C_{40}H_{33}NO_{3}-$ ClIrP₂) C, H, N; IR (cm⁻¹, Nujol) 2218, 1335 (NCO), 2088 vs, 2059 sh, 1610 (CO). Anal. $(C_{40}H_{33}NO_2ClIrP_2S)$ C, H, N; IR (cm⁻¹, Nujol) 2066 (NCS), 2028, 1612 (CO)]. Addition of ¹³CO to 1 and CO to 13 CO labeled 1 established that the methyl carbon is bonded to the initially coordinated CO rather than the CO which is added.9

^{(1) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University cience Books, 1987; Chapter 6. (b) Wojcicki, A. Adv. Organomet. Chem. Science Books, 1987; Chapter 6. (b) Wojcicki, A. Adv. Organomet. Chem.
1973, 11, 87. (c) Calderazzo, F. Angew. Chem., Int. Ed. Engl. 1977, 16, 299.
(d) Kuhlman, E. J.; Alexander, J. J. Coord. Chem. Rev. 1980, 33, 195.
(2) Flood, T. C.; Campbell, K. D.; Downs, H. H.; Nakanishi, S. Organometallics 1983, 2, 1590 and references therein.
(3) (a) Wax, M. J.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 7028.
(b) Webb, S. L.; Giandomenico, C. M.; Halpern, J. J. Am. Chem. Soc. 1986, 108, 345.

^{108, 345}

^{4) (}a) Butts, S. B.; Strauss, S. H.; Holt, E. M.; Stimson, R. E.; Alcock, N. W.; Shriver, D. F. J. Am. Chem. Soc. 1980, 102, 5093. Richmond, T. G.; Basolo, F.; Shriver, D. F. Inorg. Chem. 1982, 21, 1272.

^{(5) (}a) Magnuson, R. H.; Meirowitz, R.; Zulu, S. J.; Giering, W. P. J. Am. Chem. Soc. 1982, 104, 5790. (b) Magnuson, R. H.; Meirowitz, R.; Zulu, S. J.; Giering, W. P. Organometallics 1983, 2, 460.

⁽⁶⁾ Berke, H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 7224.
(7) (a) Kubota, M.; Blake, D. M. J. Am. Chem. Soc. 1971, 93, 136. (b) Kubota, M.; Blake, D. M.; Smith, S. A. Inorg. Chem. 1971, 10, 1430.
(8) Egglestone, D. L.; Baird, M. C.; Lock, J. L.; Turner, G. J. Chem. Soc., 5

Dalton Trans. 1977, 1576. (9) Addition of ¹³CO to **2A** gave **3B** with ν (CO) shifted from 2067 to 2017 cm⁻¹ and bands at 1732 and 1629 cm⁻¹ unshifted. Addition of CO to ¹³CO

labeled 1 gave a spectrum with bands at 1697 and 1598 cm^{-1} shifted from 1733 and 1626 cm^{-1} in the unlabeled complex.

Addition of 1,4-CH₃OC₆H₄NC to 2A in CDCl₃ gave immediate displacement of water to form 2C (¹H NMR, δ 0.94 (t, J = 6.0 Hz 3 H) 3.79 (s, 3 H, OCH₃), and subsequent growth of a singlet resonance at 1.41 ppm with concomitant decay of the triplet at 0.94 ppm. This reaction mixture had IR absorption bands at 2189 (NC) and 1600 cm⁻¹ (CO). The isonitrile in 4C could not be replaced by anions, and instead several such complexes were isolated as crystalline materials [Anal. for [Ir(PPh₃)₂- $(CH_3CO)Cl(CH_3C_6H_4NC)_2]BF_4 (C_{54}H_{47}N_2OClIrP_2BF_4) C, H, N; IR (cm⁻¹, Nujol) 2211, 2181 (NC), 1610 (CO), 1051–1087$ (BF). Anal. for [Ir(PPh₃)₂(CH₃CO)Cl(PhCH₂NC)₂]BF₄ (C₅₄H₄₇N₂OClIrP₂BF₄) C, H, N; IR (cm⁻¹, Nujol) 2254, 2223, (NC), 1606, 1054-1090 (BF). Anal. for [Ir(PPh₃)₂(CH₃CO)- $Cl(ClC_6H_4NC)_2$]BF₄ (C₅₂H₄₁OBCl₃F₄IrP₂) C, H, N; IR (cm⁻¹, Nujol) 2178, 2208 (NC), 1608 (CO), 1030-1090 (BF)].

The methyl migration reaction promoted by the addition of isonitrile was found to be first order in 2C and independent of isonitrile concentration.¹⁰ The rates of migration with 1,4-substituted benzene isonitriles are not highly dependent on electronic factors; however, the migration rates were slower with benzyl isonitrile and 2,6-diisopropylbenzene isonitrile.

Addition of benzonitrile to 2A in CDCl₃ leads to displacement of water and formation of 2D (NMR δ 1.11 (t, 5.5 Hz)) and very slow transformation to migrated products 3D and 4D. σ donor ligands which were added to 1 which did not lead to migration of the methyl ligand from Ir to CO gave complexes 2 with ν (CO) shifted from 2038 cm⁻¹ to the following frequencies (cm⁻¹): Et₃P, 2049; Ph₃PO, 2041; py, 2044; (CH₃)₂S, 2047; CH₃CN, 2055; Ph₃As and Ph₃P, 2040; and *p*-anisidine, 2055. Neutral derivatives of 2 where L is an anionic ligand which have been previously reported by Strope and Shriver¹¹ similarly do not undergo the methyl migration reaction. For example, treatment of the neutral complex 2E (where L is the chloride anion) in benzene with 20 psi CO for 20 h did not give a methyl migrated product. Weaker π acceptor ligands such as P(OPh)₃, P(OMe)₃, or dimethyl acetylenedicarboxylate were found not to promote the methyl migration.

The promotion of methyl migration by the π acceptor CO and isonitrile ligands, but not by σ donor ligands, observed in this study is in accord with the calculations of activation energies for methyl migration by Berke and Hoffmann.⁶ Complexes 2B and 2C with CO and isonitrile ligands trans to the migrating methyl ligand had CO stretching frequencies in the 2068-2077 cm⁻¹ region, whereas complexes with σ donor ligands trans to the methyl ligand had CO frequencies in the 2038-2060-cm⁻¹ region. In addition to exerting a trans labilization on the migrating methyl ligand, the π acceptor ligands also increase the susceptibility of the CO ligand to nucleophilic attack.¹² Interestingly, organophosphines which promote migration in the 16-electron Pt(II) system¹³ do not appear to promote methyl migration in the 18-electron Ir(III) system.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. This research was also supported by the National Science Foundation (CHE-8410454). We thank the Perkin-Elmer Corporation for providing the Perkin-Elmer Model 983 infrared spectrophotometer and the National Science Foundation (CHE-8419266 and CH-8551250) for partial funding for the IBM AF-200 FT NMR spectrometer.

Supplementary Material Available: Experimental details and analyses (2 pages). Ordering information is given on any current masthead page.

UV-Laser Photochemistry: Diffusion-Controlled Trapping of Cyclic 1,3-Diradicals by Molecular Oxygen. Conformational Effects on Triplet Lifetimes

Waldemar Adam,* Peter Hössel,^{1a} Walter Hümmer,^{1b} and Herbert Platsch

> Institute of Organic Chemistry University of Würzburg/Am Hubland D-8700 Würzburg, Federal Republic of Germany

R. Marshall Wilson*

Department of Chemistry, University of Cincinnati Cincinnati, Ohio 45221 Received June 3, 1987

Oxygen trapping of triplet diradicals, generated via benzophenone-sensitized laser photolyses of azoalkane precursors has provided an effective tool for estimating lifetimes of such transient species, especially with localized radical centers such as the cycloalka-1,3-diyls 1 (eq 1).² In view of the lack of chromophores

$$R^{1} \underbrace{\stackrel{(1)}{\underset{(CH_{2})_{n}}{N^{2}}}}_{R^{2}} R^{2} \underbrace{\stackrel{(1)}{\underset{(R_{2})_{n}}{P_{2}CO}}}_{R^{2}} R^{1} \underbrace{\stackrel{(1)}{\underset{(CH_{2})_{n}}{P_{2}CO}}}_{R^{2}} R^{2} \underbrace{\stackrel{(1)}{\underset{(CH_{2})_{n}}{P_{2}}}}_{R^{2}} R^{2} + R^{1} \underbrace{\stackrel{(0)}{\underset{(CH_{2})_{n}}{P_{2}}}}_{R^{2}} R^{2} (1)$$

$$\frac{1}{1a} (R^{1} = R^{2} = H; n = 2) \text{ 1b } (R^{1} = R^{2} = Me; n = 2)$$

$$1c (R^{1} = R^{2} = H; n = 3) \text{ 1d } (R^{1} = H; R^{2} = Me; n = 3)$$

$$1e (R^{1} = R^{2} = Me; n = 3)$$

in the near UV-vis region, such diradicals are "invisible" in the more usually employed time-resolved laser flash spectroscopic detection.³ Consequently, the oxygen-trapping method constitutes a complementary and useful extension, which permits probing such subtle features as conformational effects⁴ in intersystem crossing processes.

For assessing the absolute triplet lifetimes in the oxygentrapping method (competition kinetics), a critical parameter is the rate constant k_1 for oxygen trapping (eq 2). Diffusion control

$$1/X_{\rm P} = 1/[1 - X_{\rm H}] = 1/T_{\rm f} + 1/(k_{\rm t} \cdot \tau_{\rm T} \cdot [{\rm O}_2])$$
 (2)

 $X_{\rm P}$ = mole fraction of peroxide (trapped product)

 $X_{\rm H}$ = mole fraction of hydrocarbon (untrapped product)

 $T_{\rm f} = k_{\rm t} / (k_{\rm t} + k_{\rm c})$, the trapping factor

 $k_{\rm t}$ = rate constant for oxygen trapping

 $k_{\rm c}$ = rate constant for oxygen-catalyzed intersystem crossing

 $\tau_{\rm T} = 1 / k_{\rm ISC}$, the triplet lifetime

 $k_{\rm ISC}$ = rate constant for intersystem crossing

was assumed² to estimate k_t for the cyclopenta-1,3-diyl (1a), as shown in (eq 3),² where the $\frac{4}{9}$ factor is the spin-statistical cor-

$$k(O_2) = k_t + k_c = (\frac{4}{9}) \cdot k_{diff}$$
 (3)

rection.⁵ On one hand, free radicals react with ³O₂ at diffusion rates⁶ and on the other hand the rate data available from time-

7570

⁽¹⁰⁾ The rates of migration were determined by measuring the decrease in absorbances of the CO stretching bands of the isonitrile complexes 2C at 2074 cm⁻¹ in dichloromethane at 25 °C. The rate constants ($\times 10^3$ s) observed for the 1,4-X benzene isonitrile complexes were for X = F, 8.6; X = Cl, 7.8; X = H, 8.8; $X = CH_3$, 8.5; $X = CH_3O$, 8.3; for PhCH₂NC, 3.5; and for 2,6-disopropylbenzene isonitrile, 2.2.
(11) Strope, D.; Shriver, D. F. J. Am. Chem. Soc. 1973, 95, 2652.
(12) Angelici, R. J. Acc. Chem. Res. 1972, 5, 335.
(13) Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984, 17, 67.

^{(1) (}a) Doctoral Fellow (1985-1987), Fonds der Chemischen Industrie.

 ^{(1) (}a) Doctoral Fellow (1985-1987), Fonds der Chemischen Industrie.
 (b) Undergraduate Research Participant (spring 1986).
 (2) (a) Adam, W.; Hannemann, K.; Wilson, R. M. J. Am. Chem. Soc.
 1986, 108, 929. (b) Adam, W.; Hannemann, K.; Wilson, R. M. J. Am. Chem. Soc.
 (a) (a) Scaiano, J. C. Acc. Chem. Res. **1982**, 15, 252. (b) Caldwell, R.
 A. Pure Appl. Chem. **1984**, 56, 1167. (c) Wirz, J. Pure Appl. Chem. **1984**, 56 1280

^{56. 1289.}

⁽⁴⁾ Salem, L.; Rowland, C. Angew. Chem. 1972, 84, 86.

⁽⁵⁾ For the reaction of two triplets only the singlet and the three triplet encounter complexes lead to products, whereas the five quintets are dissociative.